题目内容
已知x2-3x-1=0,求
,
的值.
| x2 |
| x4-x2+1 |
| x3 |
| x6+3x3-1 |
考点:分式的化简求值
专题:
分析:根据x2-3x-1=0,可得x2=3x+1,x2-3x=1,再代入化简计算即可.
解答:解:∵x2-3x-1=0,
∴x2=3x+1,x2-3x=1,
∴
=
=
=
=
=
=
;
∵x3=x•x2=x(3x+1)=3x2+x=3(3x+1)+x=10x+3,
∴
=
=
=
=
=
=
.
∴x2=3x+1,x2-3x=1,
∴
| x2 |
| x4-x2+1 |
=
| x2 |
| x2(x2-1)+1 |
=
| x2 |
| (3x+1)(3x+1-1)+1 |
=
| x2 |
| 9x2+3x+1 |
=
| x2 |
| 9x2+x2 |
=
| x2 |
| 10x2 |
=
| 1 |
| 10 |
∵x3=x•x2=x(3x+1)=3x2+x=3(3x+1)+x=10x+3,
∴
| x3 |
| x6+3x3-1 |
=
| 10x+3 |
| (10x+3)2+3(10x+3)-1 |
=
| 10x+3 |
| 100x2+60x+9+30x+9-1 |
=
| 10x+3 |
| 100(3x+1)+90x+17 |
=
| 10x+3 |
| 390x+117 |
=
| 10x+3 |
| 39(10x+3) |
=
| 1 |
| 39 |
点评:本题考查的是分式的化简求值,解答此题的关键是将式子变形为字母可以约分的形式,有一定的难度.
练习册系列答案
相关题目