题目内容

在梯形纸片ABCD中,AD∥BC,AD>CD.将纸片沿过点D的直线折叠,使点C落在AD边上的点C′处,折痕DE交BC于点E,连接C′E,则四边形CDC′E的形状准确地说应为


  1. A.
    矩形
  2. B.
    菱形
  3. C.
    梯形
  4. D.
    平行四边形
B
分析:首先由折叠的性质可得:CD=C′D,∠C′DE=∠CDE,CE=C′E,又由AD∥BC,即可证得△CDE是等腰三角形,可得CD=CE,然后根据四条边都相等的四边形是菱形,即可证得四边形CDC′E为菱形.
解答:四边形CDC′E是菱形.
理由:根据折叠的性质,可得:CD=C′D,∠C′DE=∠CDE,CE=C′E,
∵AD∥BC,
∴∠C′DE=∠CED,
∴∠CDE=∠CED,
∴CD=CE,
∴CD=C′D=C′E=CE,
∴四边形CDC′E为菱形.
故选B.
点评:此题考查了折叠的性质,等腰三角形的判定与性质以及菱形的判定等知识.此题难度适中,解题的关键是注意数形结合思想的应用,注意根据折叠的性质找到对应边与对应角.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网