题目内容

如图,AB∥CD,证明:∠A=∠C+∠P.

证明:∵AB∥CD,
∴∠A=∠PED,(两直线平行,同位角相等)
又∠PED为△PCE的外角,
∴∠P+∠C=∠PED,
∴∠P+∠C=∠A.
分析:因为∠PED为△PCE的外角,所以∠P+∠C=∠PED;再根据两直线平行,同位角相等可得∠A=∠PED,即∠A=∠C+∠P.
点评:本题考查三角形外角的性质及平行线的性质,解答的关键是沟通外角和内角的关系.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网