题目内容

已知如图,AD∥BC,AB⊥BC,CD⊥DE,CD=ED,AD=2,BC=3,则△ADE的面积为( )

A.1 B.2 C.5 D.无法确定

A

【解析】

试题分析:因为知道AD的长,所以只要求出AD边上的高,就可以求出△ADE的面积.过D作BC的垂线交BC于G,过E作AD的垂线交AD的延长线于F,构造出Rt△EDF≌Rt△CDG,求出GC的长,即为EF的长,然后利用三角形的面积公式解答即可.

【解析】
过D作BC的垂线交BC于G,过E作AD的垂线交AD的延长线于F,

∵∠EDF+∠FDC=90°,

∠GDC+∠FDC=90°,

∴∠EDF=∠GDC,

于是在Rt△EDF和Rt△CDG中,

∴△DEF≌△DCG,

∴EF=CG=BC﹣BG=BC﹣AD=3﹣2=1,

所以,S△ADE=(AD×EF)÷2=(2×1)÷2=1.

故选A.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网