题目内容
计算:(π﹣3.14)0+﹣()﹣2+2sin30°.
从△ABC(CB<CA)中裁出一个以AB为底边的等腰△ABD,并使得△ABD的面积尽可能大.
(1)用尺规作图作出△ABD.(保留作图痕迹,不要求写作法、证明)
(2)若AB=2m,∠CAB=30°,求裁出的△ABD的面积.
如图,在平面直角坐标中,△AOB的三个顶点的坐标分别是A(4,4),O(0,0),B(6,0),点M是射线OB上的一动点,过点M作MN∥AB,MN与射线OA交于点N,P是AB边上的任意点,连接AM,PM,PN,BN,设△PMN的面积为S.
(1)点M的坐标为(2,0)时,求点N的坐标.
(2)当M在边OB上时,S有最大值吗?若有,求出S的最大值;若没有,请说明理由.
(3)是否存在点M,使△PMN和△ANB中,其中一个面积是另一个2倍?如果存在,求出点M的坐标;如果不存在,请说明理由.
一个圆锥的侧面展开图是半径为8,圆心角为120°的扇形,则这个圆锥的高为( )
A. cm B. cm C. cm D. cm
在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.
(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;
(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;
(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.
已知正方形ABCD的边长为3,E是BC上一点,BE=,Q是CD上一动点,将△CEQ沿直线EQ折叠后,点C落在点P处,连接PA,点Q从点C出发,沿线段CD向点D运动,当PA的长度最小时,CQ的长为( )
A.3﹣3 B.3﹣ C. D.3
下列计算正确的是( )
A.a2+a2=a4 B.a2•a3=a6 C.(﹣a2)2=a4 D.(a+1)2=a2+1
如图,一根电线杆的接线柱部分AB在阳光下的投影CD的长为1米,太阳光线与地面的夹角∠ACD=60°,则AB的长为( )
A.米B.米C.米D.米
先化简,再求值:(1﹣)÷,其中a=+1.