题目内容
如图,在ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC边于点E,则CE的长等于( )
A.8cm B.6cm C.4cm D.2cm
点P(-3,4)关于X轴对称的坐标是( )
A(3,4) B.(-3,-4) C.(3,-4) D.(-4,-3)
如果一种变换是将抛物线向右平移2个单位或向上平移1个单位,我们把这种变换称为抛物线的简单变换。已知抛物线经过两次简单变换后的一条抛物线是,则原抛物线的解析式不可能是( )
A. B.
C. D.
如图,已知直线y=﹣x+3分别交x轴、y轴于点A、B,P是抛物线y=﹣x2+2x+5的一个动点,其横坐标为a,过点P且平行于y轴的直线交直线y=﹣x+3于点Q,则当PQ=BQ时,a的值是 .
如图,已知“人字梯”的5个踩档把梯子等分成6份,从上往下的第二个踩档与第三个踩档的正中间处有一条60cm长的绑绳EF,tanα=,则“人字梯”的顶端离地面的高度AD是( )
A.144cm B.180cm C.240cm D.360cm
某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元.为按时完成任务,该企业招收了新工人.设新工人李明第X天生产的粽子数量为y只,y与x满足如下关系:
(1)李明第几天生产的粽子数量为420只?
(2)如图,设第x天每只粽子的成本是p元,p与x之间的关系可用图中的函数图形来刻画.若李明第x天创造的利润为w元,求w关于x的函数表达式,并求出第几天的利润最大,最大利润时多少元?(利润=出厂价-成本)
如图,在直角坐标系xOy中,已知点A(0,1),点P在线段OA上,以AP为半径的☉P周长为1.点M从A开始沿☉P按逆时针方向转动,射线AM交x轴于点N(n,0),设点M转过的路程为m(0<m< 1).
(1)当m= 时,n=________;
(2)随着点M的转动,当m从 变化到 时,点N相应移动的路径长为________.
(本题满分10分)在平面直角坐标系中,抛物线y=x+5x+4的顶点为M,与x轴交于A、B两点与y轴交于C点。
(1)求点A、B、C的坐标;
(2)求抛物线y=x+5x+4关于坐标原点O对称的抛物线的函数表达式;
(3)设(2)中所求抛物线的顶点为,与x轴交于、两点,与y轴交于点,在以A、B、C、M、、、、、这八个点中的四个点为顶点的平行四边形中,求其中一个不是菱形的平行四边形的面积。
计算: .