题目内容
如图,将一张四边形纸片沿直线剪开,如果剪开后的两个图形的内角和相等,下列四种剪法中,符合要求的是( )
A. ①② B. ①③ C. ②④ D. ③④
为了鼓励居民节约用水,某市采用“阶梯水价”的方法按月计算每户家庭的水费:每月用水量不超过20吨时,按每吨2元计费;每月用水量超过20吨时,其中的20吨仍按每吨2元计费,超过部分按每吨2.8元计费,设每户家庭每月用水量为x吨时,应交水费y元.
(1)分别求出0≤x≤20和x>20时,y与x之间的函数表达式;
(2)小颖家四月份、五月份分别交水费45.6元、38元,问小颖家五月份比四月份节约用水多少吨?
如图,过y轴正半轴上的任意一点P,作x轴的平行线,分别与反比例函数y=-和y=的图象交于点A和点B,若点c是x轴上任意一点,连接AC、BC,则△ABC的面积为( )
A. 3 B. 4 C. 5 D. 6
直线 与轴交于点C,与轴交于点B,与反比例函数的图象在第一象限交于点A,连接OA,若,则k的值为_____.
桌子上摆放了若干碟子,分别从三个方向上看其三视图如图所示,则桌子上共有碟子( ).
A. 17个 B. 12个 C. 9个 D. 8个
如图,一次函数y=kx+b与反比例函数(m≠0)图象交于A(﹣4,2),
B(2,n)两点.
(1)求一次函数和反比例函数的表达式;
(2)求△ABO的面积;
(3)当x取非零的实数时,试比较一次函数值与反比例函数值的大小.
计算:=_____.
如图,在平面直角坐标系xoy中,抛物线与轴交于点A(-3,0),C(1,0),与轴交于点B.
(1)求此抛物线的解析式;
(2)点P是直线AB上方的抛物线上一动点(不与点A,B重合),过点P作轴的垂线,垂足交点为F,交直线AB于点E,作于点D.
①点P在什么位置时,△PDE的周长最大,求出此时P点的坐标;
②连接PA,以PA为边作正方形APMN,当顶点M或N恰好落在抛物线对称轴上时,求出对应的P点的坐标.
圆锥的母线长为11cm,侧面积为33πcm2,圆锥的底面圆的半径为_________.