题目内容
直线 与轴交于点C,与轴交于点B,与反比例函数的图象在第一象限交于点A,连接OA,若,则k的值为_____.
一元二次方程的解为____________。
先化简,再求值:,其中,,.
太阳的半径为696000千米,把这个数据用科学记数法表示为( ).
A. 696×103千米 B. 69.6×104千米 C. 6.96×105千米 D. 6.96×106千米
如图,四边形是平行四边形,把△ABD沿对角线BD翻折180°得到△.
(1)利用尺规作出△.(要求保留作图痕迹,不写作法);
(2)设 与BC交于点E,求证:△≌△.
抛物线与轴交于A、B两点,点P在函数的图象上,若△PAB为直角三角形,则满足条件的点P的个数为( ).
A. 2个 B. 3个 C. 4个 D. 6个
如图,将一张四边形纸片沿直线剪开,如果剪开后的两个图形的内角和相等,下列四种剪法中,符合要求的是( )
A. ①② B. ①③ C. ②④ D. ③④
关于x的分式方程有解,则字母a的取值范围是( )
A. a=5或a=0 B. a≠0 C. a≠5 D. a≠5且a≠0
对于⊙P及一个矩形给出如下定义:如果⊙P上存在到此矩形四个顶点距离都相等的点,那么称⊙P是该矩形的“等距圆”.如图,在平面直角坐标系xOy中,矩形ABCD的顶点A的坐标为(,),顶点C、D在x轴上,且OC=OD.
(1)当⊙P的半径为4时,
①在P1(,),P2(,),P3(,)中可以成为矩形ABCD的“等距圆”的圆心的是 ;
②如果点P在直线上,且⊙P是矩形ABCD的“等距圆”,求点P的坐标;
(2)已知点P在轴上,且⊙P是矩形ABCD的“等距圆”,如果⊙P与直线AD没有公共点,直接写出点P的纵坐标m的取值范围.