题目内容


如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,O是AB上一点,以OA为半径的⊙O经过点D.

(1)求证:BC是⊙O切线;

(2)若BD=5,DC=3,求AC的长.

 


【考点】切线的判定.

【专题】几何综合题.

【分析】(1)要证BC是⊙O的切线,只要连接OD,再证OD⊥BC即可.

(2)过点D作DE⊥AB,根据角平分线的性质可知CD=DE=3,由勾股定理得到BE的长,再通过证明△BDE∽△BAC,根据相似三角形的性质得出AC的长.

【解答】(1)证明:连接OD;

∵AD是∠BAC的平分线,

∴∠1=∠3.(1分)

∵OA=OD,

∴∠1=∠2.

∴∠2=∠3.

∥AC.(2分)

∴∠ODB=∠ACB=90°.

∴OD⊥BC.

∴BC是⊙O切线.(3分)

(2)解:过点D作DE⊥AB,

∵AD是∠BAC的平分线,

∴CD=DE=3.

在Rt△BDE中,∠BED=90°,

由勾股定理得:,(4分)

∵∠BED=∠ACB=90°,∠B=∠B,

∴△BDE∽△BAC.(5分)

∴AC=6.(6分)

【点评】本题综合性较强,既考查了切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了角平分线的性质,勾股定理得到BE的长,及相似三角形的性质.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网