题目内容
一个三角形的两边长分别是2和3,若它的第三边长为奇数,则这个三角形的周长为
8 .
考点: 三角形三边关系..
分析: 首先设第三边长为x,根据三角形的三边关系可得3﹣2<x<3+2,然后再确定x的值,进而可得周长.
解答: 解:设第三边长为x,
∵两边长分别是2和3,
∴3﹣2<x<3+2,
即:1<x<5,
∵第三边长为奇数,
∴x=3,
∴这个三角形的周长为2+3+3=8,
故答案为:8.
点评: 此题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边,三角形的两边差小于第三边.
练习册系列答案
相关题目
如图,在平面直角坐标系xOy中,以M为顶点的抛物线与x轴分别相交于B,C两点,抛物线上一点A的横坐标为2,连接AB,AC,正方形DEFG的一边GF在线段BC上,点D,E在线段AB,AC上,AK⊥x轴于点K,交DE于点H,下表给出了这条抛物线上部分点(x,y)的坐标值:
| x | … | ﹣2 | 0 | 4 | 8 | 10 | … |
| y | … | 0 | 5 | 9 | 5 | 0 | … |
(1)求出这条抛物线的解析式;
(2)求正方形DEFG的边长;
(3)请问在抛物线的对称轴上是否存在点P,在x轴上是否存在点Q,使得四边形ADQP的周长最小?若存在,请求出P,Q两点的坐标;若不存在,请说明理由.
![]()