题目内容
【题目】在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成的矩形的周长与面积相等,则称这个点为“美好点”,如图,过点P分别作x轴,y轴的垂线,与坐标轴围成的矩形OAPB的周长与面积相等,则P为“美好点”.
![]()
(1)在点M(2,2),N(4,4),Q(﹣6,3)中,是“美好点”的有 ;
(2)若“美好点”P(a,﹣3)在直线y=x+b(b为常数)上,求a和b的值;
(3)若“美好点”P恰好在抛物线y=
x2第一象限的图象上,在x轴上是否存在一点Q使得△POQ为直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.
【答案】(1)N、Q;(2)a=6,b=﹣9或a=﹣6,b=3;(3)存在,点Q的坐标为(6,0)或(
,0).
【解析】
(1)根据“美好点”的定义逐个验证即可;
(2)对于P点,对应图形的周长为:2×(|a|+3)=2|a|+6,面积为3|a|,因为点P是“美好点”,故2|a|+6=3|a|,即可求解;
(3)根据点P是“美好点”确定点P的坐标,设点Q的坐标为(x,0),再分以下三种情况:当∠POQ=90°时,此种情况不存在;当∠PQO=90°时,则PO2=PQ2+OQ2;当∠OPQ=90°时,则OQ2=PQ2+OP2,分别列出关于x的方程,解得x即可.
解:(1)对于M点,对应图形的周长为:2×(2+2)=8,面积为2×2=4≠8,故点M不是“美好点”;
对于点N,对应图形的周长为:2×(4+4)=16,面积为4×4=16,故点N是“美好点”;
对于点Q,对应图形的周长为:2×(6+3)=18,面积为6×3=18,故点Q是“美好点”;
故答案为:N、Q;
(2)对于P点,对应图形的周长为2×(|a|+3)=2|a|+6,面积为3|a|,
∵点P是“美好点”,
∴2|a|+6=3|a|,解得:a=±6,
将P(a,﹣3)代入y=x+b得:﹣3=a+b,则b=﹣3﹣a,
∴当a=6时,b=-9;当a=-6时,b=3,
故a=6,b=﹣9或a=﹣6,b=3;
(3)存在,理由如下:
设点P的坐标为(m,n),则n=
m2(m>0,n>0),
由题意得:2m+2n=mn,∴2m+
m2=
m3,
解得:m=6或﹣4(舍去)或0(舍去),
故点P的坐标为(6,3);
设点Q的坐标为(x,0),
则PQ2=(x﹣6)2+32=(x﹣6)2+9,
PO2=36+9=45,
OQ2=x2,
当∠POQ=90°时,∵点Q在x轴上,则∠POQ≠90°,此种情况不存在;
当∠PQO=90°时,则PO2=PQ2+OQ2,∴45=(x﹣6)2+9+ x2,解得x=6或x=0(舍去);
当∠OPQ=90°时,则OQ2=PQ2+OP2,∴x2=(x﹣6)2+9+45,解得x=
;
综上所述,符合条件的点Q的坐标为:(6,0)或(
,0).