题目内容
下列关于x的一元二次方程有实数根的是( )
A.x2+1=0 B.x2+x+1=0 C.x2﹣x+1=0 D.x2﹣x﹣1=0
某商品的进价为每件50元,售价为每件60元,每个月可卖出200件;如果每件商品的售价每上涨1元.则每个月少卖10件.设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.
(1)求y与x的函数关系式;
(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?
(3)若每个月的利润不低于2160元,售价应在什么范围?
如图,⊙O的半径为1,A、B、C是圆周上的三点,∠BAC=36°,则劣弧BC的长是( )
A. B. C. D.
若抛物线y=ax2+bx+c(a≠0)的图象与抛物线y=x2﹣4x+3的图象关于y轴对称,则函数y=ax2+bx+c的解析式为 .
平行四边形的四个顶点在同一圆上,则该平行四边形一定是( )
A.正方形 B.菱形 C.矩形 D.等腰梯形
在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.
(1)求证:△ADF∽△DEC;
(2)若AB=4,AD=3,AE=3,求AF的长.
如图,△ABC和△DBC是两个具有公共边的全等三角形,AB=AC=6cm,BC=4cm,将△DBC沿射线BC平移一定的距离得到△D1B1C1,连接AC1,BD1.如果四边形ABD1C1是矩形,那么平移的距离为 .
如图,一次函数的图象与x轴、y轴分别相交于A、B两点,且与反比例函数y=(k≠o)的图象在第一象限交于点C,如果点B的坐标为(0,2).OA=OB,B是线段AC的中点.
(l)求点A的坐标及一次函数解析式;
(2)求点C的坐标及反比例函数的解析式.
下列函数中,在x>0时,y随x增大而减小的是
A.y=2x﹣1 B.y=﹣x2+7x+
C.y=﹣ D.y=