题目内容
因式分【解析】 .
如图,已知a∥b,小华把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为( )
A.100° B.110° C.120° D.130°
在一次射击训练中,某位选手五次射击的环数分别为5,8,7,6,9.则这位选手五次射击环数的方差为 .
如图,在平面直角坐标系中,把矩形沿对角线所在的直线折叠,点落在点处,与轴相交于点.矩形的边,的长是关于的一元二次方程的两个根,且.
(1)求线段,的长;
(2)求证:,并求出线段的长;
(3)直接写出点的坐标;
(4)若是直线上一个动点,在坐标平面内是否存在点,使以点,,,为顶点的四边形是菱形?若存在,请直接写出点的坐标;若不存在,请说明理由.
如图,在平面直角坐标系中,等腰直角三角形的直角边在轴的正半轴上,且,以为直角边作第二个等腰直角三角形,以为直角边作第三个等腰直角三角形,则点的坐标为 .
一个圆锥的侧面积是底面积的3倍,则圆锥侧面展开图的扇形的圆心角是( )
A. B. C. D.
下列四个图形分别是节能、节水、低碳和绿色食品标志,是轴对称图形的是( )
几个相同的小正方体所搭成的几何体的俯视图如图所示,小正方形中的数字表示在该位置小正方体的个数最多是( )
俯视图 左视图
A.5个 B.7个 C.8个 D.9个
如图,已知抛物线与轴交于两点,与轴交于点,且,直线与轴交于点,点是抛物线上的一动点,过点作轴,垂足为,交直线于点.
(1)试求该抛物线的表达式;
(2)如图(1),若点在第三象限,四边形是平行四边形,求点的坐标;
(3)如图(2),过点作轴,垂足为,连接,
①求证:是直角三角形;
②试问当点横坐标为何值时,使得以点为顶点的三角形与相似?