题目内容
计算(a﹣b)2的结果是( )
A. a2﹣b2 B. a2﹣2ab+b2 C. a2+2ab﹣b2 D. a2+2ab+b2
已知一个三角形的三条边长均为正整数.若其中仅有一条边长为5,且它不是最短边,则满足条件的三角形个数为________________
下列判断正确的是( )
A. 两边和一角对应相等的两个三角形全等 B. 一边及一锐角相等的两个直角三角形全等
C. 顶角和底边分别相等的两个等腰三角形全等 D. 三个内角对应相等的两个三角形全等
化简求值:(x+2y)2﹣(x+y)(3x﹣y)﹣5y2,其中x=2,y=.
设(5a+3b)2=(5a﹣3b)2+A,则A=( )
A. 30ab B. 60ab C. 15ab D. 12ab
综合与实践
问题背景
折纸是一种许多人熟悉的活动,将折纸的一边二等分、四等分都是比较容易做到的,但将一边三等分就不是那么容易了,近些年,经过人们的不懈努力,已经找到了多种将正方形折纸一边三等分的精确折法,最著名的是由日本学者芳贺和夫发现的三种折法,现在被数学界称之为芳贺折纸三定理.其中,芳贺折纸第一定理的操作过程及内容如下(如图1):
操作1:將正方形ABCD对折,使点A与点D重合,点B与点C重合.再将正方形ABCD展开,得到折痕EF;
操作2:再将正方形纸片的右下角向上翻折,使点C与点E重合,边BC翻折至B'E的位置,得到折痕MN,B'E与AB交于点P.则P即为AB的三等分点,即AP:PB=2:1.
解决问题
(1)在图1中,若EF与MN交于点Q,连接CQ.求证:四边形EQCM是菱形;
(2)请在图1中证明AP:PB=2:l.
发现感悟
若E为正方形纸片ABCD的边AD上的任意一点,重复“问题背景”中操作2的折纸过程,请你思考并解决如下问题:
(3)如图2.若 =2.则= ;
(4)如图3,若=3,则= ;
(5)根据问题(2),(3),(4)给你的启示,你能发现一个更加一般化的结论吗?请把你的结论写出来,不要求证明.
如图,在?ABCD中,E为CD的中点,BF⊥AE,垂足为F,AD=AE=1,∠DAE=30°,EF=_____.
如图,在矩形中,点在对角线上,以的长为半径的圆与分别交于点,且.
(1)求证:是圆所在圆的切线;
(2)若,,求⊙O的半径.
如图,△ABC的面积为8cm2,AP垂直∠B的平分线BP于P,则△PBC的面积为( )
A. 2cm2 B. 3cm2 C. 4cm2 D. 5cm2