题目内容
下列图形中,是轴对称图形但不是中心对称图形的是( ).
A B C D
B
三角形两边长分别是8和6,第三边长是一元二次方程x2-16x+60=0的一个实数根,则该三角形的面积是__________
已知,如图,抛物线与轴交于点C,与轴交于A,B两点,点A在点B左侧.点B的坐标为(1,0),OC=3OB.
(1)求抛物线的解析式;
(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值;
(3)若点E在轴上,点P在抛物线上.是否存在以A,C,E,P为顶点且以AC为一边的平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.
已知,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在阳光下的投影BC=3m。
(1)请你在图中画出此时DE在阳光下的投影;
(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长。
如图1,在,将一块与全等的三角板的直角顶点放在点C上,一直角边与BC重叠。
(1)操作1:固定,将三角板沿方向平移,使其直角顶点落在BC的中点M,如图2所示,探究:三角板沿方向平移的距离为___________;
(2)操作2:在(1)的情况下,将三角板BC的中点M顺时针方向旋转角度,如图3所示,探究:设三角形板两直角边分别与AB、AC交于点P、Q,观察四边形MPAQ形状的变化,问:四边形MPAQ的面积S是否改变,若不变,求其面积;若改变,试说明理由;
(3)在(2)的情形下,连PQ,设的面积为y,试求y关于x的函数关系式,并求x为何值时,y的值是四边形MPAQ的面积的一半,此时,指出四边形MPAQ的形状。
如图,点A在半径为2的⊙O上,过线段OA上的一点P作直线L,与⊙O过点A的切线交于点B,且∠APB=60°,设OP=x,则△PAB的面积y关于x的函数图像大致是( )
⊙O的半径为R,点O到直线l的距离为d,R,d是方程x2﹣4x+m=0的两根,当直线l与⊙O相切时,m的值为 _________ .
如图1,M是铁丝AD的中点,将该铁丝首尾相接折成△ABC,且∠B=30°,∠C=100°,如图2.则下列说法正确的是( )
A.点M在AB上
B.点M在BC的中点处
C.点M在BC上,且距点B较近,距点C较远
D.点M在BC上,且距点C较近,距点B较远
三角形的三个内角( )
A.至少有两个锐角 B.至少有一个直角
C.至多有两个钝角 D.至少有一个钝角