题目内容
(本题满分10分)
已知关于的一元二次方程为.
(1)试说明此方程有两个不相等的实数根;
(2)当为何整数时,此方程的两个根都为正整数?
如图是两个完全相同的转盘,每个转盘被分成了面积相等的四个区域,每个区域内分别填上数字“1”“2”“3”“4”.甲、乙两学生玩转盘游戏,规则如下:固定指针,同时转动两个转盘,任其自由转动,当转盘停止时,若两指针所指数字的积为奇数,则甲获胜;若两指针所指数字的积为偶数,则乙获胜.那么在该游戏中乙获胜的概率是
如图1,在△ABC中,∠ACB=90°,BC=2,∠A=30°,点E,F分别是线段BC,AC的中点,连结EF.
(1)线段BE与AF的位置关系是 ,= .
(2)如图2,当△CEF绕点C顺时针旋转a时(0°<a<180°),连结AF,BE,(1)中的结论是否仍然成立.如果成立,请证明;如果不成立,请说明理由.
(3)如图3,当△CEF绕点C顺时针旋转a时(0°<a<180°),延长FC交AB于点D,如果AD=6﹣2,求旋转角a的度数.
如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=( )
A.3 B.4 C.5 D.6
(本题满分14分)如图,对称轴为直线x=-1的抛物线y=x2+bx+c与x轴相交于A、B两点,与y轴的交于C点,其中A点的坐标为(-3,0).
(1)求抛物线的表达式;
(2)若将此抛物线向右平移m个单位,A、B、C三点在坐标轴上的位置也相应的发生移动,在移动过程中,△BOC能否成为等腰直角三角形?若能,求出m的值,若不能,请说明理由.
已知是方程的一个实数根,则代数式的值为.
点A(﹣2,3)关于x轴的对称点A′的坐标为 .
(本题满分8分)(1)如图,试用直尺与圆规在平面内确定一点O,使得点O到Rt△ABC的两边AC、BC的距离相等,并且点O到A、B两点的距离也相等.(不写作法,但需保留作图痕迹)
(2)在(1)中,作OM⊥AC于M, ON⊥BC于N,连结A0、BO.求证:△OMA≌△ONB.
定义符号max{a,b}的含义为:当a≥b时max{a,b}=a;当a<b时max{a,b}=b.如:max{1,﹣3}=1,max{﹣4,﹣2}=﹣2.则max{x2-1,x}的最小值是( )
A.0 B.1 C. D.