题目内容

在△ABC中,AB=AC,CD=CB,若∠ACD=42°,则∠BAC=
 
°.
考点:等腰三角形的性质
专题:
分析:设∠BAC=x,根据等边对等角及三角形外角的性质得出∠B=∠BDC=42°+x,∠ADC=∠B+∠BCD=42°+x+x=42°+2x,再根据邻补角定义得出∠ADC+∠BDC=180°,由此列出方程42°+2x+42°+x=180°,解方程即可.
解答:解:设∠BAC=x,则∠BDC=42°+x.
∵CD=CB,
∴∠B=∠BDC=42°+x.
∵AB=AC,
∴∠ACB=∠B=42°+x,
∴∠BCD=∠ACB-∠ACD=x,
∴∠ADC=∠B+∠BCD=42°+x+x=42°+2x.
∵∠ADC+∠BDC=180°,
∴42°+2x+42°+x=180°,
解得x=32°,
所以∠BAC═32°.
故答案为32.
点评:本题考查了等腰三角形的性质,三角形外角的性质及邻补角定义,难度适中.设出适当的未知数,用含x的代数式分别表示∠ADC与∠BDC是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网