题目内容

如图,直线y=2x+4与x,y轴分别交于A,B两点,以OB为边在y轴右侧作等边三角形OBC,将点C向左平移,使其对应点C′恰好落在直线AB上,则点C′的坐标为
 
考点:一次函数图象上点的坐标特征,等边三角形的性质,坐标与图形变化-平移
专题:数形结合
分析:先求出直线y=2x+4与y轴交点B的坐标为(0,4),再由C在线段OB的垂直平分线上,得出C点纵坐标为2,将y=2代入y=2x+4,求得x=-1,即可得到C′的坐标为(-1,2).
解答:解:∵直线y=2x+4与y轴交于B点,
∴y=0时,2x+4=0,
解得x=-2,
∴B(0,4).
∵以OB为边在y轴右侧作等边三角形OBC,
∴C在线段OB的垂直平分线上,
∴C点纵坐标为2.
将y=2代入y=2x+4,得2=2x+4,
解得x=-1.
故答案为:(-1,2).
点评:本题考查了一次函数图象上点的坐标特征,等边三角形的性质,坐标与图形变化-平移,得出C点纵坐标为2是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网