题目内容


如图,在△ABC中,∠B=60°,⊙O是△ABC的外接圆,过点A作⊙O的切线,交CO的延长线于点M,CM交⊙O于点D.

(1)求证:AM=AC;

(2)若AC=3,求MC的长.


       (1)证明:连接OA,

∵AM是⊙O的切线,∴∠OAM=90°,

∵∠B=60°,∴∠AOC=120°,

∵OA=OC,∴∠OCA=∠OAC=30°,

∴∠AOM=60°,∴∠M=30°,

∴∠OCA=∠M,

∴AM=AC;

(2)作AG⊥CM于G,

∵∠OCA=30°,AC=3,∴AG=

由勾股定理的,CG=

则MC=2CG=3

点评:    本题考查的是切线是性质、等腰三角形的性质和勾股定理的应用,掌握圆的切线垂

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网