题目内容
一元二次方程有两个相等的实数根,则等于 ( )
A. B. 1 C. 或1 D. 2
如图:AC=DF,AD=BE,BC=EF。求证:∠C=∠F。
如图,⊙O的弦AB垂直半径OC于点D,∠CBA=30°,OC=cm,则弦AB的长为( ).
A.9cm B.cm C.cm D.cm
如图,在△ABC中,∠B=90°,AB=12mm,BC=24mm,动点P从点A开始沿边AB向B以2mm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以4mm/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过 秒,四边形APQC的面积最小.
由二次函数y=﹣x2+2x可知( )
A.其图象的开口向上
B.其图象的对称轴为x=1
C.其最大值为﹣1
D.其图象的顶点坐标为(﹣1,1)
如图,在矩形ABCD中,AB=6cm,AD=8cm,点P从点A出发沿AD向点D匀速运动,速度是1cm/s,过点P作PE∥AC交DC于点E,同时,点Q从点C出发沿CB方向,在射线CB上匀速运动,速度是2cm/s,连接PQ、QE,PQ与AC交与点F,设运动时间为t(s)(0<t<8).
(1)当t为何值时,四边形PFCE是平行四边形;
(2)设△PQE的面积为s(cm2),求s与t之间的函数关系式;
(3)是否存在某一时刻t,使得△PQE的面积为矩形ABCD面积的;
(4)是否存在某一时刻t,使得点E在线段PQ的垂直平分线上.
已知点A在半径为3的⊙O内,OA等于1,点B是⊙O上一点,连接AB,当∠OBA取最大值时,AB的长度为 .
在平面直角坐标中,抛物线y=ax2﹣3ax﹣10a(a>0)分别交x轴于点A、B(点A在点B左侧),交y轴于点C,且OB=OC.
(1)求a的值;
(2)如图1,点P位抛物线上一动点,设点P的横坐标为t(t>0),连接AC、PA、PC,△PAC的面积为S,求S与t之间的函数关系式;
(3)如图2,在(2)的条件下,设对称轴l交x轴于点H,过P点作PD⊥l,垂足为D,在抛物线、对称轴上分别取点E、F,连接DE、EF,使PD=DE=EF,连接AE交对称轴于点G,直线y=kx﹣k(k≠0)恰好经过点G,将直线y=kx﹣k沿过点H的直线折叠得到对称直线m,直线m恰好经过点A,直线m与第四象限的抛物线交于另一点Q,若=,求点Q的坐标.
计算:|﹣4|﹣()﹣2= .