题目内容

已知:如图,AB是⊙O的直径,直线CD交⊙O于C、D两点,过A、B两点分别作AE⊥CD、BF⊥CD,垂足为点E、F,求证:CE=DF.
考点:垂径定理
专题:证明题
分析:作OH⊥CD于H,根据垂径定理得CH=DH,由于BF⊥CD,则OH∥BF,根据平行线分线段成比例定理得HE=HF,则CH-EH=HD-HF,易得CE=DF.
解答:证明:作OH⊥CD于H,
则CH=DH,
∵BF⊥CD,
∴OH∥BF,
而OA=OB,
∴HE=HF,
∴CH-EH=HD-HF,
即CE=DF.
点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网