题目内容
4.(1)求证:△ADE≌△CBF;
(2)若∠ADB是直角,则四边形BEDF是什么四边形?证明你的结论.
分析 (1)由四边形ABCD是平行四边形,即可得AD=BC,AB=CD,∠A=∠C,又由E、F分别为边AB、CD的中点,可证得AE=CF,然后由SAS,即可判定△ADE≌△CBF;
(2)先证明BE与DF平行且相等,然后根据一组对边平行且相等的四边形是平行四边形,再连接EF,可以证明四边形AEFD是平行四边形,所以AD∥EF,又AD⊥BD,所以BD⊥EF,根据菱形的判定可以得到四边形是菱形.
解答 (1)证明:∵四边形ABCD是平行四边形,
∴AD=BC,AB=CD,∠A=∠C,
∵E、F分别为边AB、CD的中点,
∴AE=$\frac{1}{2}$AB,CF=$\frac{1}{2}$CD,
∴AE=CF,
在△ADE和△CBF中,
∵
$\left\{\begin{array}{l}{AD=BC}\\{∠A=∠C}\\{AE=CF}\end{array}\right.$,
∴△ADE≌△CBF(SAS);
(2)若∠ADB是直角,则四边形BEDF是菱形,理由如下:
解:由(1)可得BE=DF,![]()
又∵AB∥CD,
∴BE∥DF,BE=DF,
∴四边形BEDF是平行四边形,
连接EF,在?ABCD中,E、F分别为边AB、CD的中点,
∴DF∥AE,DF=AE,
∴四边形AEFD是平行四边形,
∴EF∥AD,
∵∠ADB是直角,
∴AD⊥BD,
∴EF⊥BD,
又∵四边形BFDE是平行四边形,
∴四边形BFDE是菱形.
点评 本题主要考查了平行四边形的性质,全等三角形的判定以及菱形的判定,利用好E、F是中点是解题的关键.
练习册系列答案
相关题目
12.若|3-a|+$\sqrt{2+b}$=0,则a+b的值是( )
| A. | 2 | B. | 1 | C. | 0 | D. | -1 |