题目内容

14.如图,△ABC中,BD平分∠ABC,EF垂直平分BC交BC于点E,交BD于点F,连接CF,若∠A=60°,∠ABD=25°,则∠ACF的度数为(  )
A.25°B.45°C.50°D.70°

分析 根据角平分线的性质可得∠DBC=∠ABD=25°,然后再计算出∠ACB的度数,再根据线段垂直平分线的性质可得BF=CF,进而可得∠FCB=25°,然后可算出∠ACF的度数.

解答 解:∵BD平分∠ABC,
∴∠DBC=∠ABD=25°,
∵∠A=60°,
∴∠ACB=180°-60°-25°×2=70°,
∵BC的中垂线交BC于点E,
∴BF=CF,
∴∠FCB=25°,
∴∠ACF=70°-25°=45°,
故选:B.

点评 本题主要考查了线段垂直平分线的性质,以及三角形内角和定理,关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网