题目内容
如果2a-1和5-a是一个正数m的平方根,3a+b-1的立方根是-2, 求a+2b的平方根.
有五张正面分别标有数字—2、—1、0、1、2的不透明卡片,它们除数字不同外其余全部相同,现将它们背面向上,洗匀后从中任取一张,将卡片上的数字记为,则使关于的一元一次方程有整数解,且方程的整数解能与2,6组成三角形的概率是____________.
如图1,点EF在直线l的同一侧,要在直线l上找一点K,使KE与KF的距离之和最小,我们可以作出点E关于l的对称点E′,连接FE′交直线L于点K,则点K即为所求.
(1)(实践运用)抛物线y=ax2+bx+c经过点A(﹣1,0)、B(3,0)、C(0,﹣3).如图2.
①求该抛物线的解析式;
②在抛物线的对称轴上找一点P,使PA+PC的值最小,并求出此时点P的坐标及PA+PC的最小值.
(2)(知识拓展)在对称轴上找一点Q,使|QA﹣QC|的值最大,并求出此时点Q的坐标.
已知a﹣b+c=0,则一元二次方程ax2+bx+c=0(a≠0)必有一个根是( )
A. 1 B. ﹣2 C. 0 D. ﹣1
观察下列算式:
①1×3-22=3-4=-1;
②2×4-32=8-9=-1;
③3×5-42=15-16=-1;
…
(1)请按照以上规律写出第10个等式。
(2)请按照以上规律写出第n个等式。
(3)(2)中的式子一定成立吗?若不一定成立,请举出反例;若一定成立,请说出理由。
若2x+5y-3=0,则= ______.
x的2倍与5的和不大于它的三倍减去4的差,则x的取值范围是( )。
A. x>9 B. x C. x<9 D. x9
如图,在平面直角坐标系中,直线的解析式为,该直线与轴、轴分别交于点,以为边在第一象限内作正△ABC.若点在第一象限内,且满足,则的取值范围是( )
A. B. C. D.
某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费,为更好地做决策,自来水公司随机抽取部分用户的用水量数据,并绘制了如图不完整的统计图(每组数据包括最大值但不包括最小值),请你根据统计图解决下列问题:
(1)此次抽样调查的样本容量是
(2)补全左侧统计图,并求扇形统计图中“25吨~30吨”部分的圆心角度数.
(3)如果自来水公司将基本用水量定为每户25吨,那么该地区6万用户中约有多少用户的用水全部享受基本价格?