题目内容
证明:任意三个连续的奇数中,中间一个数的平方总比另外两个数的积大4.
如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.
如:,,,因此4,12,20都是“神秘数”
(1)28和2 012这两个数是“神秘数”吗?为什么?
(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?
(3)两个连续奇数的平方数(取正数)是神秘数吗?为什么?