题目内容

12.如图,已知△ABC是等腰直角三角形,∠ACB=90°,P为斜边AB上一点,PF⊥BC于点F,PE⊥AC于点E.若S△APE=7,S△PBF=2,则PC的长为(  )
A.5B.3$\sqrt{2}$C.$\sqrt{53}$D.3$\sqrt{5}$

分析 由等腰直角三角形的性质得出∠A=∠B=45°,证出四边形PECF是矩形,得出PF=CE,证出△APE和△BPF是等腰直角三角形,得出AE=PE,BF=PF,再由三角形的面积得出PE2=14,CE2=PF2=4,由勾股定理求出PC的长即可.

解答 解:∵△ABC是等腰直角三角形,∠ACB=90°,
∴∠A=∠B=45°,
∵PF⊥BC于点F,PE⊥AC于点E,
∴∠PFB=∠PEA=90°,四边形PECF是矩形,
∴△APE和△BPF是等腰直角三角形,PF=CE,∠PEC=90°,
∴AE=PE,BF=PF,
∵S△APE=$\frac{1}{2}$AE•PE=$\frac{1}{2}$PE2=7,S△PBF=$\frac{1}{2}$PF•BF=$\frac{1}{2}$PF2=2,
∴PE2=14,CE2=PF2=4,
∴PC=$\sqrt{P{E}^{2}+C{E}^{2}}$=$\sqrt{14+4}$=3$\sqrt{2}$;
故选:B.

点评 本题考查了等腰直角三角形的判定与性质、矩形的判定与性质、勾股定理;熟练掌握等腰直角三角形的判定与性质,运用勾股定理求出PC是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网