题目内容
如图,函数与的图象相交于点A(1, 2)和点B.当时,自变量的取值范围是( )
A.
B.
C.或
D.或
如图,直线y=x+1分别与x轴、y轴相交于点A、B,以点A为圆心,AB长为半径画弧交x轴于点A1,再过点A1作x轴的垂线交直线于点 B1,以点A为圆心,AB1长为半径画弧交x轴于点A2,……,
按此做法进行下去,则点A8的坐标是
A.(15,0) B.(16,0) C.(8,0) D.(,0)
已知关于x的一元二次方程2x-3kx+4=0的一个根是1,则k=_____________.
如图,直线l经过点A(1,0),且与双曲线y=(x>0)交于点B(2,1),过点P(p,p-1)(p>1)作x轴的平行线分别交曲线y=(x>0)和y=-(x<0)于M,N两点.
(1)求m的值及直线l的解析式;
(2)若点P在直线y=2上,求证:△PMB∽△PNA;
(3)是否存在实数p,使得S△AMN=4S△APM?若存在,请求出所有满足条件的p的值;若不存在,请说明理由.
已知如图,A是反比例函数的图像上的一点,AB⊥x轴于点B,且△ABO的面积是3,则
k .
某人匀速跑步到公园,在公园里某处停留了一段时间,再沿原路匀速步行回家,此人离家的距离与时间的关系的大致图象是 ( )
(本小题满分12分)如图,已知二次函数图象的顶点坐标为(2,0),直线y = x+1与二次函数的图象交于A、B两点,其中点A在y轴上.
(1)二次函数的解析式为y = ;
(2)证明点(-m,2m-1)不在(1)中所求的二次函数图象上;
(3)若C为线段AB的中点,过点C做CE⊥x轴于点E,CE与二次函数的图象交于D.
①y轴上存在点K,使K、A、D、C为顶点的四边形是平行四边形,则点K的坐标是 .
②二次函数的图象上是否存在点P,使得三角形 S△ POE=2S △ABD?若存在,求出P坐标,若不存在,请说明理由.
如图,为了测量校园水平地面上一棵不可攀的树的高度,学校数学兴趣小组根据光的反射定律,利用一面镜子和一根皮尺,设计如下图所示的测量方案:把一面很小的镜子水平放置在离树底B端8.4米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=3.2米,观察者目高CD=1.6米,则树AB的高度约为( )
A.4.2米 B.4.8米 C.6.4米 D.16.8米
(6分)计算:.