题目内容
11.分析 根据平行四边形性质得出AD∥CB,AB∥CD,推出∠DAB+∠CBA=180°,求出∠PAB+∠PBA=90°,在△APB中求出∠APB=90°,由勾股定理求出BP,证出AD=DP=5,BC=PC=5,得出DC=10=AB,即可求出答案.
解答 解:∵四边形ABCD是平行四边形,
∴AD∥CB,AB∥CD,
∴∠DAB+∠CBA=180°,
又∵AP和BP分别平分∠DAB和∠CBA,
∴∠PAB+∠PBA=$\frac{1}{2}$(∠DAB+∠CBA)=90°,
在△APB中,∠APB=180°-(∠PAB+∠PBA)=90°;
∵AP平分∠DAB,
∴∠DAP=∠PAB,
∵AB∥CD,
∴∠PAB=∠DPA
∴∠DAP=∠DPA
∴△ADP是等腰三角形,
∴AD=DP=5,
同理:PC=CB=5,
即AB=DC=DP+PC=10,
在Rt△APB中,AB=10,AP=8,
∴BP=$\sqrt{1{0}^{2}-{8}^{2}}$=6,
∴△APB的周长=6+8+10=24;
故答案为:24.
点评 本题考查了平行四边形性质,平行线性质,等腰三角形的性质和判定,三角形的内角和定理,勾股定理等知识点的综合运用.
练习册系列答案
相关题目
19.将一根圆柱形的空心钢管任意放置,它的主视图不可能是( )
| A. | B. | C. | D. |