题目内容
在Rt△ABC中,∠ABC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.
(1)证明四边形ADCF是菱形;
(2)若AC=4,AB=5,求菱形ADCF的面积.
如图,在等腰Rt△ABC中,∠BAC=90°,AB=AC,BC=,点D是AC边上一动点,连接BD,以AD为直径的圆交BD于点E,则线段CE长度的最小值为 .
下面四个图形中,∠1=∠2一定成立的是( )
A. B.
C. D.
如图,四边形ABCD的四边相等,且面积为120cm2,对角线AC=24cm,则四边形ABCD的周长为( )
A.52cm B.40cm C.39cm D.26cm
下列各式计算正确的是( )
A. B. C. D.
先化简,再求值:,其中a是方程x2﹣5x﹣6=0的根.
关于x的一元二次方程(m+1)x2+x+m2﹣2m﹣3=0有一个根为0,则m的值为 .
如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.
(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;
(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;
(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.
给出下列命题,其中,真命题的个数是( )
①平行四边形的对角线互相平分
②对角线相等的四边形是矩形
③菱形的对角线互相垂直平分
④对角线互相垂直且相等的四边形是正方形.
A.4个 B.3个 C.2个 D.1个