题目内容

已知a、b、c是三角形的三边,则代数式a2-2ab+b2-c2的值(  )
A、不能确定B、大于0
C、等于0D、小于0
考点:因式分解的应用,三角形三边关系
专题:
分析:根据三角形中任意两边之和大于第三边.把代数式a2-2ab+b2-c2分解因式就可以进行判断.
解答:解:a2-2ab+b2-c2=(a-b)2-c2=(a+c-b)[a-(b+c)].
∵a,b,c是三角形的三边.
∴a+c-b>0,a-(b+c)<0.
∴a2-2ab+b2-c2<0.
故选:D.
点评:本题考查了利用完全平方公式配方,利用平方差公式因式分解,三角形的三边关系,利用完全平方公式配方整理成两个因式乘积的形式是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网