题目内容

阅读下面材料,并解答问题.
材料:将分式
-x4-x2+3
-x2+1
拆分成一个整式与一个分式(分子为整数)的和的形式.
解:由分母为-x2+1,可设-x4-x2+3=(-x2+1)(x2+a)+b
则-x4-x2+3=(-x2+1)(x2+a)+b=-x4-ax2+x2+a+b=-x4-(a-1)x2+(a+b)
∵对应任意x,上述等式均成立,∴
a-1=1
a+b=3
,∴a=2,b=1.
-x4-x2+3
-x2+1
=
(-x2+1)(x2+2)+1
-x2+1
=
(-x2+1)(x2+2)
-x2+1
+
1
-x2+1
=x2+2+
1
-x2+1

这样,分式
-x4-x2+3
-x2+1
被拆分成了一个整式(x2+2)与一个分式
1
-x2+1
的和.
请你仿照上述过程将分式
-x4-6x2+8
-x2+1
拆分成一个整式与一个分式(分子为整数)的和的形式.
考点:分式的混合运算
专题:阅读型
分析:只需仿照原材料中的解题过程就可解决问题.
解答:解:由分母为-x2+1,可设-x4-6x2+8=(-x2+1)(x2+a)+b,
则-x4-6x2+8=(-x2+1)(x2+a)+b=-x4-ax2+x2+a+b=-x4+(-a+1)x2+(a+b).
∵对应任意x,上述等式均成立,∴
-a+1=-6
a+b=8
,∴a=7,b=1.
-x4-6x2+8
-x2+1
=
(-x2+1)(x2+7)+1
-x2+1
=
(-x2+1)(x2+7)
-x2+1
+
1
-x2+1
=x2+7+
1
-x2+1

这样,分式
-x4-6x2+8
-x2+1
被拆分成了一个整式(x2+7)与一个分式
1
-x2+1
的和.
点评:本题主要考查的是阅读理解能力、运用已有经验解决问题的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网