题目内容
若关于x的一元二次方程有两个不相等的实数根,则k的取值范围是( )
A. 且 k B. 且
C. D. 且
如图,在一张长方形纸条上画一条数轴.
()若折叠纸条,数轴上表示的点与表示的点重合,则折痕与数轴的交点表示的数为__________.
()若经过某次折叠后,该数轴伤的两个数和表示的点恰好重合,则折痕与数轴的交点表示的数为__________(用含, 的代数式表示).
()若将此纸条沿虚线处剪开,将中间的一段纸条对折,使其左右两端重合,这样连续对折次后,再将其展开,请分别求出最左端的折痕和最右端的折痕与数轴的交点表示的数(用含的代数式表示).
等边三角形有______条对称轴.
如图,甲、乙两人在玩转盘游戏时,准备了两个可以自由转动的转盘A,B,每个转盘被分成面积相等的几个扇形,并在每一个扇形内标上数字.游戏规则:同时转动两个转盘,当转盘停止后,指针所指区域的数字之和为0时,甲获胜;数字之和为1时,乙获胜.如果指针恰好指在分割线上,那么重转一次,直到指针指向某一区域为止.
(1)用画树状图或列表法求乙获胜的概率;
(2)这个游戏规则对甲、乙双方公平吗?请判断并说明理由.
如图,每个小正方形的边长为1,点A、B、C是小正方形的顶点,则∠ABC的正弦值为( )
A. B. C. D. 不能确定
如图,已知△ABC中,∠B=∠C,AB=AC=10cm,BC=8cm,点D为AB的中点.
(1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.
①若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?
(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC边上相遇?
如图,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,下面四个结论正确的有________________.
①BP=CM;②△ABQ≌△CAP;③∠CMQ的度数不变,始终等于60°;④当第秒或第秒时,△PBQ为直角三角形.
甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( )
A. B. C. D.
对一个图形进行放缩时,下列说法中正确的是( )
A. 图形中线段的长度与角的大小都保持不变
B. 图形中线段的长度与角的大小都会改变
C. 图形中线段的长度保持不变、角的大小可以改变
D. 图形中线段的长度可以改变、角的大小保持不变