题目内容

16.函数y=-x与函数y=x+1的图象的交点坐标为(  )
A.(-0.5,0.5)B.(0.5,-0.5)C.(-0.5,-0.5)D.(0.5,0.5)

分析 根据两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解,所以解方程组$\left\{\begin{array}{l}{y=-x}\\{y=x+1}\end{array}\right.$即可得到两直线的交点坐标.

解答 解:根据题意可得$\left\{\begin{array}{l}{y=-x}\\{y=x+1}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{x=-0.5}\\{y=0.5}\end{array}\right.$,
即函数y=-x与函数y=x+1的图象的交点坐标为(-0.5,0.5),
故选:A.

点评 本题考查了两条直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网