题目内容
如图,在一次函数y=﹣x+6的图象上取一点P,作PA⊥x轴于点A,PB⊥y轴于点B,且矩形PBOA的面积为5,则在x轴的上方满足上述条件的点P的个数共有( )
![]()
A.1个 B. 2个 C. 3个 D. 4个
C 解:①当0<x<6时,设点P(x,﹣x+6),
∴矩形PBOA的面积为5,
∴x(﹣x+6)=5,化简x2﹣6x+5=0,解得x1=1,x2=5,
∴P1(1,5),P2(5,1),
②当x<0时,设
点P(x,﹣x+6),
∴矩形PBOA的面积为5,
∴﹣x(﹣x+6)=5,化简x2﹣6x﹣5=0,解得x3=3﹣
,x4=3+
(舍去),
∴P3(3﹣
,3+
),
∴在x轴的上方满足上述条件的点P的个数共有3个.
练习册系列答案
相关题目
八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”、“戏剧”、“散文”、“其他”
四个类别,每位同学仅选一项,根
据调查结果绘制了不完整的频数分布表和扇形统计图.根据图表提供的信息,回答下列问题:
| 类别 | 频数(人数) | 频率 |
| 小说 | 0.5 | |
| 戏剧 | 4 | |
| 散文 | 10 | 0.25 |
| 其他 | 6 | |
| 合计 | m | 1 |
(1)计算m= 40 ;
(2)在扇形统计图中,“其他”类所占的百分比为 15% ;
(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从中任意选出2名同学参加学校的戏剧社团,请用画树状图或列表的方法,求选取的2人恰好是乙和丙的概率.
![]()