题目内容
抛物线y=x2+bx+c经过A(0,2),B(3,2)两点,若两动点D、E同时从原点O分别沿着x轴、y轴正方向运动,点E的速度是每秒1个单位长度,点D的速度是每秒2个单位长度.
(1)求抛物线与x轴的交点坐标;
(2)若点C为抛物线与x轴的交点,是否存在点D,使A、B、C、D四点围成的四边形是平行四边形?若存在,求点D的坐标;若不存在,说明理由
;
(3)问几秒钟时,B、D、E在同一条直线上?
![]()
解:(1)抛物线y=x2+bx+c经过A(0,2),B(3,2)两点,
∴
,
解得
,
∴抛物线的解析式为:y=x2﹣3x+2,
令y=0,则x2﹣3x+2=0,
解得:x1=1,x2=2,
∴抛物线与x轴的交点坐标是(1,0),(2,0);
(2)存在,由已知条件得AB∥x轴,
∴AB∥CD,
∴当AB=CD时,
以A、B、C、D四点围成的四边形是平行四边形,
设D(m,0),
当C(1,0)时,则CD=m﹣1,
∴m﹣1=3,
∴m=4,
当C(2,0)时,则CD=m﹣2,
∴m﹣2=3,
∴m=5,
∴D(5,0),
综上所述:当D(4,0)或(5,0)时,使A、B、C、D四点围成的四边形是平行四边形;
(3)设t秒钟时,B、D、E在
同一条直线上,则OE=t,OD=2t,
∴E(0,t),D(2t,0),
设直线BD的解析式为:y=kx+b,
∴
,
解得k=﹣
或k=
(不合题意舍去),
∴当k=﹣
,t=
,
∴点D、E运动
秒钟时,B、D、E在同一条直线上.
某玩具商计划生产A、B两种型号的玩具投入市场,初期计划生产100件,生产投入资金不少于22400元,但不超过22500元,且资金要全部投入到生产这两种型号的玩具.假设生产的这两种型号玩具能全部售出,这两种玩具的生产成本和售价如表:
| 型号 | A | B |
| 成本(元) | 200 | 240 |
| 售价(元) | 250 | 300 |
(1)该玩具商对这两种型号玩具有哪几种生产方案?
(2)该玩具商如何生产,就能获得最大利润?