题目内容

10.如图,在△ABC中,O是AC上一动点(不与点A、C重合),过O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.
(1)OE与OF相等吗?证明你的结论;
(2)试确定点O的位置,使四边形AECF是矩形,并加以证明.

分析 (1)根据角平分线的定义可得∠BCE=∠ACE,∠OCF=∠FCD,根据两直线平行,内错角相等可得∠OEC=∠BCE,∠OFC=∠FCD,然后求出∠ACE=∠OEC,∠OCF=∠OFC,再根据等角对等边可得OE=OC,同理可得OF=OC,从而得到OE=OF;
(2)当O运动到AC中点时,四边形AECF是矩形,由AO=CO,OE=OF可得四边形AECF是平行四边形,然后再证明∠ECF=90°可得四边形AECF是矩形.

解答 解:(1)OE=OF,
∵MN∥BC,
∴∠OEC=∠BCE,∠OFC=∠FCD,
∵CE平分∠ACB,CF平分∠ACD,
∴∠BCE=∠ACE,∠OCF=∠FCD,
∴∠ACE=∠OEC,∠OCF=∠OFC,
∴OE=OC,OC=OF,
∴OE=OF.

(2)当O运动到AC中点时,四边形AECF是矩形,
∵AO=CO,OE=OF,
∴四边形AECF是平行四边形,
∵∠ECA+∠ACF=$\frac{1}{2}$∠BCD,
∴∠ECF=90°,
∴四边形AECF是矩形.

点评 此题主要考查了矩形的判定,以及等腰三角形的判定,关键是掌握等角对等边;有一个角为直角的平行四边形是矩形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网