题目内容

某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月

增长率为x,则由题意列方程为( )

A.200(1+x)2=1000

B.200+200×2x=1000

C.200+200×3x=1000

D.200[1+(1+x)+(1+x)2]=1000

D

【解析】

试题分析:先得到二月份的营业额,三月份的营业额,等量关系为:一月份的营业额+二月份的营业额+三月份的营业额=1000万元,把相关数值代入即可.

∵一月份的营业额为200万元,平均每月增长率为x,

∴二月份的营业额为200×(1+x),

∴三月份的营业额为200×(1+x)×(1+x)=200×(1+x)2,

∴可列方程为200+200×(1+x)+200×(1+x)2=1000,

即200[1+(1+x)+(1+x)2]=1000.

故选D

考点:由实际问题抽象出一元二次方程

考点分析: 考点1:一元二次方程 定义
只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。

一元二次方程的一般形式:
它的特征是:等式左边是一个关于未知数x的二次多项式,等式右边是零,其中 ax2叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。 试题属性
  • 题型:
  • 难度:
  • 考核:
  • 年级:
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网