题目内容
如图,AB是半圆O的直径,点C是⊙O上一点(不与A,B重合),连接AC,BC,过点O作OD∥AC交BC于点D,在OD的延长线上取一点E,连接EB,使∠OEB=∠ABC.
⑴求证:BE是⊙O的切线;
⑵若OA=10,BC=16,求BE的长
![]()
![]()
证明:⑴∵AB是半圆O的直径 ∴∠ACB=90°
∵OD∥AC ∴∠ODB=∠ACB=90° ∴∠BOD+∠ABC=90°
又∵∠OEB=∠ABC ∴∠BOD+∠OEB=90° ∴∠OBE=90°
∵AB是半圆O的直径 ∴BE是⊙O的切线
⑵在
中,AB=2OA=20,BC=16,∴![]()
∴
∴![]()
∴
.
练习册系列答案
相关题目