题目内容

18.如图,在平面直角坐标系中,顶点为M的抛物线y=ax2+bx(a>0)经过点A和x轴正半轴上的点B,AO=BO=2,∠AOB=120°.
(1)求a,b的值;
(2)连结OM,求∠AOM的大小.

分析 (1)根据AO=OB=2,∠AOB=120°,求出A点坐标,以及B点坐标,进而利用待定系数法求二次函数解析式;
(2)根据解析式求出M点坐标,再利用锐角三角函数关系求出∠FOM=30°,进而得出答案.

解答 解:(1)如图,

过点A作AE⊥y轴于点E,
∵AO=OB=2,∠AOB=120°,
∴∠AOE=30°,
∴AE=1,EO=$\sqrt{3}$,
∴A点坐标为:(-1,$\sqrt{3}$),B点坐标为:(2,0),
将两点代入y=ax2+bx得:
$\left\{\begin{array}{l}{a-b=\sqrt{3}}\\{4a+2b=0}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{a=\frac{\sqrt{3}}{3}}\\{b=-\frac{2\sqrt{3}}{3}}\end{array}\right.$.
∴a=$\frac{\sqrt{3}}{3}$,b=-$\frac{2\sqrt{3}}{3}$;
(2)由(1)可知:抛物线的表达式为:y=$\frac{\sqrt{3}}{3}$x2-$\frac{2\sqrt{3}}{3}$x;

过点M作MF⊥OB于点F,
∵y=$\frac{\sqrt{3}}{3}$x2-$\frac{2\sqrt{3}}{3}$x=$\frac{\sqrt{3}}{3}$(x2-2x)=$\frac{\sqrt{3}}{3}$(x-1)2-$\frac{\sqrt{3}}{3}$,
∴M点坐标为:(1,-$\frac{\sqrt{3}}{3}$),
∴tan∠FOM=$\frac{FM}{FO}$=$\frac{\sqrt{3}}{3}$,
∴∠FOM=30°,
∴∠AOM=30°+120°=150°.

点评 此题考查二次函数的综合运用,掌握锐角三角函数、待定系数法求二次函数解析式是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网