题目内容
如图,PA、PB是⊙O的切线,切点分别为A、B,若OA=2,∠P=60°,则的长为( )
A. π B. π C. π D. π
如图,A点在B点的北偏东40°方向,C点在B点的北偏东75°方向,A点在C点的北偏西50°方向.求从A点观测B,C两点的视角∠BAC的度数.
如图:△ABC的边BC的高为AF,AC边上的高为BG,中线为AD,AF=6,BC=12,BG=5.
(1)求△ABD的面积.
(2)求AC的长.
(3)△ABD和△ACD的面积有何关系.
如图,在扇形AOB中,∠AOB=90°,以点A为圆心,OA的长为半径作于点C,若OA=2,则阴影部分的面积为_____.
如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为120°,AB长为25cm,贴纸部分的宽BD为15cm,若纸扇两面贴纸,则贴纸的面积为( )
A. 175πcm2 B. 350πcm2 C. πcm2 D. 150πcm2
一经销商按市场价收购某种海鲜1000斤放养在池塘内(假设放养期内每个海鲜的重量基本保持不变),当天市场价为每斤30元,据市场行情推测,此后该海鲜的市场价每天每斤可上涨1元,但是平均每天有10斤海鲜死去.假设死去的海鲜均于当天以每斤20元的价格全部售出.
(1)用含x的代数式填空:
①x天后每斤海鲜的市场价为 元;
②x天后死去的海鲜共有 斤;死去的海鲜的销售总额为 元;
③x天后活着的海鲜还有 斤;
(2)如果放养x天后将活着的海鲜一次性出售,加上已经售出的死去的海鲜,销售总额为y1,写出y1关于x的函数关系式;
(3)若每放养一天需支出各种费用400元,写出经销商此次经销活动获得的总利润y2关于放养天数x的函数关系式.
某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.设每件商品降价x元后,每星期售出商品的总销售额为y元,则y与x的关系式为( )
A. y=60(300+20x) B. y=(60﹣x)(300+20x)
C. y=300(60﹣20x) D. y=(60﹣x)(300﹣20x)
当为________时, 与的值相等.
不等式组的解集是( )
A. x≥2 B. ﹣1<x≤2 C. x≤2 D. ﹣1<x≤1