题目内容
如图,Rt△ABC中,∠C=90°,BD=4,CD=2,∠ADB=3∠ABD,则AD= .
对于任意不相等的两个实数a、b,定义运算※如下:a※b=,如3※2=.那么8※12= .
为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.
(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;
(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?
(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?
如图,四边形ABCD内接于半圆O,已知∠ADC=140°,则∠AOC的大小是( )
A.40° B.60° C.70° D.80°
某工厂对零件进行检测,引进了检测机器.已知一台检测机的工作效率相当于一名检测员的20倍.若用这台检测机检测900个零件要比15名检测员检测这些零件少3小时.
(1)求一台零件检测机每小时检测零件多少个?
(2)现有一项零件检测任务,要求不超过7小时检测完成3450个零件.该厂调配了2台检测机和30名检测员,工作3小时后又调配了一些检测机进行支援,则该厂至少再调配几台检测机才能完成任务?
经过某个路口的汽车,它可能继续直行或向右转,若两种可能性大小相同,则两辆汽车经过该路口全部继续直行的概率为 .
如图,为了测量河两岸A、B两点的距离,在与AB垂直的方向点C处测得AC=a,∠ACB=α,那么AB等于( )
A.a•sinα B.a•tanα C.a•cosα D.
如图,作出△ABC关于点O成中心对称的三角形.(保留作图痕迹)
在下列各数0、、3π、、6.1010010001…(相邻两个1之间的0依次增加1个)、、无理数的个数是( )
A.1 B.2 C.3 D.4