题目内容

10.解方程组:
(1)$\left\{\begin{array}{l}2x+3y=7\\ 3x-4y=2\end{array}\right.$
(2)$\left\{{\begin{array}{l}{\frac{2x-1}{5}+\frac{3y-2}{4}=2}\\{\frac{3x-1}{5}-\frac{3y+2}{4}=0}\end{array}}\right.$.

分析 (1)方程组利用加减消元法求出解即可;
(2)方程组整理后,利用加减消元法求出解即可.

解答 解:(1)$\left\{\begin{array}{l}{2x+3y=7①}\\{3x-4y=2②}\end{array}\right.$,
①×4+②×3得:17x=34,即x=2,
把x=2代入①得:y=1,
则方程组的解为$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$;
(2)方程组整理得:$\left\{\begin{array}{l}{8x+15y=54①}\\{12x-15y=14②}\end{array}\right.$,
①+②得:20x=68,即x=$\frac{17}{5}$,
把x=3.4代入①得:y=$\frac{134}{75}$,
则方程组的解为$\left\{\begin{array}{l}{x=\frac{17}{5}}\\{y=\frac{134}{75}}\end{array}\right.$.

点评 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网