题目内容

如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.

(1) 证明:∠BAC=∠DAC,∠AFD=∠CFE;

(2) 若AB∥CD,试证明四边形ABCD是菱形;

(3) 在(2)的条件下,试确定E点的位置,使∠EFD=∠BCD,并说明理由.

 

 

【解析】
(1) ∵AB=AD,CB=CD,AC=AC,

∴△ABC≌△ADC.

∴∠BAC =∠DAC.

∵ AB=AD,∠BAF =∠DAF,AF=AF.

∴△ABF≌△ADF.

∴∠AFB=∠AFD.

又∵∠CFE =∠AFB,

∴∠AFD=∠CFE.

∴∠BAC=∠DAC,∠AFD=∠CFE.

(2) ∵AB∥CD,

∴∠BAC=∠ACD.

又∵∠BAC=∠DAC,

∴∠BAC=∠ACD.

∴∠DAC=∠ACD.

∴AD=CD,

∵AB=AD , CB=CD,

∴AB=CB=CD=AD.

∴四边形ABCD是菱形.

(3)当BE⊥CD时,∠EFD=∠BCD.理由:

∵四边形ABCD为菱形,

∴BC=CD,∠BCF=∠DCF.

又∵CF为公共边,

∴△BCF≌△DCF.

∴∠CBF=∠CDF,

∵BE⊥CD,

∴∠BEC =∠DEF=90°.

∴∠EFD =∠BCD.

 

【解析】

(1)利用已知条件和公共边,证得△ABC≌△ADC,即可证明∠BAC=∠DAC;再证明△ABF≌△ADF,得到∠AFB=∠AFD,再利用对顶角相等,易知结论;(2)有平行线的性质和(1)中结论,易知∠DAC=∠ACD,所以AD=CD,进而证得AB=CB=CD=AD,即可证明结论;(3)当BE⊥CD时,有(2)可知BC=CD ,∠BCF=∠DCF,利用△BCF≌△DCF证得∠CBF=∠CDF,再利用等角的余角相等即可证明结论∠EFD =∠BCD.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网