题目内容
设[x]表示不超过x最大整数,又设x、y满足方程组
,如果x不是整数,那么x+y是( )
|
| A、一个整数 |
| B、在4与5之间 |
| C、在-4与4之间 |
| D、在15与16之间 |
分析:首先利用原方程变形,将3[x-2]变为3[x]-6,得出有关y与[x]的方程,求出y与[x],得出x+y的取值范围.
解答:解:由原方程组
,
可得原方程即为:
②-①得:
解得:[x]=4,y=11,
∴[x]+y=15,
∴15<x+y<16.
故选D.
|
可得原方程即为:
|
②-①得:
解得:[x]=4,y=11,
∴[x]+y=15,
∴15<x+y<16.
故选D.
点评:此题主要考查了取整函数的性质,将3[x-2]变为3[x]-6整理为y与[x]的方程,是解决问题的关键.
练习册系列答案
相关题目
设{x}表示不超过x的最大整数,如{
}=1,{π}=3,…那么{
+3}等于( )
| 3 |
| 7 |
| A、2 | B、3 | C、4 | D、5 |
设[x]表示不超过x的最大整数,若M=
,N=[
],其中x≥1,则一定有( )
| [x] |
|
| A、M>N | B、M=N |
| C、M<N | D、以上答案都不对 |