题目内容
化简: .
如图, 是⊙的直径, 是弦, , .若点是直径上一动点,当 是等腰三角形时, __________ .
如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点M在BC边上,且∠MDF=∠ADF.
(1)求证:△ADE≌△BFE.
(2)连接EM,如果FM=DM,判断EM与DF的关系,并说明理由.
已知点M(a,3),点N(2,b)关于y轴对称,则(a+b)2017的值( )
A. ﹣3 B. ﹣1 C. 1 D. 3
“年冬季越野赛”在滨河学校操场举行,某运动员从起点学校东门出发,途径湿地公园,沿比赛路线跑回终点学校东门.沿该运动员离开起点的路程(千米)与跑步时间(时间)之间的函数关系如图所示,其中从起点到湿地公园的平均速度是千米/分钟,用时分钟,根据图像提供的信息,解答下列问题:
()求图中的值;
()组委会在距离起点千米处设立一个拍摄点,该运动员从第一次过点到第二次过点所用的时间为分钟.
①求所在直线的函数解析式;
②该运动员跑完全程用时多少分钟?
不等式: 的解集__________.
如图,将向右平移得到, 与交于点,其中, ,则( ).
A. B. C. D.
如图,等腰直角△ABC中,AB=AC=8,以AB为直径的半圆O交斜边BC于D,则阴影部分面积为(结果保留π)_____________.
如图,在Rt△ABC中,AC=24cm,BC=7cm,P点在BC上,从B点到C点运动(不包括C点),点P运动的速度为2cm/s;Q点在AC上从C点运动到A点(不包括A点),速度为5cm/s.若点P、Q分别从B、C同时运动,且运动时间记为t秒,请解答下面的问题,并写出探索的主要过程.
(1)当t为何值时,P、Q两点的距离为5cm?
(2)当t为何值时,△PCQ的面积为15cm2?
(3)请用配方法说明,点P运动多少时间时,四边形BPQA的面积最小?最小面积是多少?