题目内容
【题目】如图,在平面直角坐标系中,直线y=﹣4x+4与x轴、y轴分别交于A.B两点,以AB为边在第一象限内作正方形ABCD,顶点D在双曲线y=kx-1上,将该正方形沿x轴负方向平移a个单位长度后,顶点C恰好落在双曲线y=kx-1上,则a的值是( )
![]()
A. 3 B. 4 C. 5 D. 6
【答案】A
【解析】
如图作CN⊥OB于N,DM⊥OA于M,CN与DM交于点F,CN交反比例函数于H,利用三角形全等,求出点C、点H坐标即可解决问题.
如图作CN⊥OB于N,DM⊥OA于M,CN与DM交于点F,CN交反比例函数于H.
![]()
∵直线y=4x+4与x轴、y轴分别交于A.B两点,
∴点B(0,4),点A(1,0),
∵四边形ABCD是正方形,
∴AB=AD=DC=BC,∠BAD=90°,
∵∠BAO+∠ABO=90°,∠BAO+∠DAM=90°,
∴∠ABO=∠DAM,
在△ABO和△DAM中,
∠BOA=∠AMD=90°;∠ABO=∠DAM;AB=AD,
∴△ABO≌△DAM,
∴AM=BO=4,DM=AO=1,
同理可以得到:CF=BN=AO=1,DF=CN=BO=4,
∴点F(5,5),C(4,1),D(5,1),k=5,
∴反比例函数为y=
.
∴直线CN与反比例函数图象的交点H坐标为(1,5),
∴正方形沿x轴负方向平移a个单位长度后,顶点C恰好落在双曲线y=
上时,a=3,
故选A.
练习册系列答案
相关题目