题目内容
已知,求•的值.
已知,AB是⊙O的直径,BC是⊙O的弦,⊙O的割线PDE垂直于AB于点F,交BC于点G,∠A=∠BCP.
(1)求证:PC是⊙O的切线;
(2)若点C在劣弧AD上运动,其条件不变,问应再具备什么条件可使结论BG2=BF·BO成立,(要求画出示意图并说明理由).
命题:①对顶角相等;②在同一平面内,垂直于同一条直线的两直线平行;③相等的角是对顶角;④内错角相等.其中假命题有( )
A. ①② B. ①③ C. ②④ D. ③④
已知一个正多边形的内角是140°,则这个正多边形的边数是( )
A. 6 B. 7 C. 8 D. 9
(1)如图1,在四边形ABCD中,∠D=37°,点E是BC边上一点,沿AE折叠,点B落在AD上B′处,若B′E∥CD,则∠B=_________°.
(2)如图2,在四边形ABCD中,AB∥CD,点E是BC边上一点,沿AE折叠,点B落在AD上B′处,点F是BC边上一点,沿DF折叠,点C落在AD上C′处.B′E与C′F有何位置关系?为什么?
(3)如图3,在四边形ABCD中,∠B=∠D=90°,点E是BC边上一点,沿AE折叠,点B落在AD上B′处,点F是AD边上一点,沿CF折叠,点D落在BC上D′处.试问:AE与CF有何位置关系?说明理由.
(4)在四边形ABCD中,点E是BC边上一点,沿AE折叠.
①若点B落在四边形ABCD内B′处(如图4),则∠1,∠2,∠BAD,∠B之间的数量关系为________.
②若点B落在四边形ABCD外B′处(如图5),则∠1,∠2,∠BAD,∠B之间的数量关系为 ______.
如图,在△ABC中,把△ABC沿直线AD翻折180°,使点C 落在点B的位置,则关于线段AD的说法:①线段AD是△ABC的中线;②线段AD是△ABC的高;③线段AD是△ABC的角的平分线.其中正确的是( )
A. ①② B. ①③ C. ②③ D. ①②③
在下列生活现象中,不是平移现象的是( )
A. 站在运行的电梯上的人 B. 左右推动的推拉窗帘
C. 小亮荡秋千的运动 D. 坐在直线行驶的列车上的乘客
解下列不等式:
(1)4(2x-1)<3(4x+2);
(2)4(x-1)>5x-6;
(3) <1-;
(4)10-≥9+
数学活动
问题情境:
如图1,在∆ABC中,AB=AC,∠BAC=90°,D,E分别是边AB,AC的中点,将∆ADE绕点A顺时针旋转α角(0°<α<90°)得到∆AD′E′,连接CE′,BD′.探究CE′与BD′的数量关系;
图1 图2 图3 图4
探究发现:
(1)图1中,CE′与BD′的数量关系是________;
(2)如图2,若将问题中的条件“D,E分别是边AB,AC的中点”改为“D为AB边上任意一点,DE∥BC交AC于点E”,其他条件不变,(1)中CE′与BD′的数量关系还成立吗?请说明理由;
拓展延伸:
(3)如图3,在(2)的条件下,连接BE′,CD′,分别取BC,CD′,E′D′,BE′的中点F,G,H,I,顺次连接F,G,H,I得到四边形FGHI.请判断四边形FGHI的形状,并说明理由;
(4)如图4,在∆ABC中,AB=AC,∠BAC=60°,点D,E分别在AB,AC上,且DE∥BC,将∆ADE绕点A顺时针旋转60°得到∆AD′E′,连接CE′,BD′.请你仔细观察,提出一个你最关心的数学问题(例如:CE′与BD′相等吗?).