ÌâÄ¿ÄÚÈÝ
2£®Ä³ÊÐÐèÒªÆÌÉèÒ»Ìõ³¤660Ã׵ĹܵÀ£¬ÎªÁ˾¡Á¿¼õÉÙÊ©¹¤¶Ô³ÇÊн»Í¨Ôì³ÉµÄÓ°Ï죬ʵ¼ÊÊ©¹¤Ê±£¬Ã¿ÌìÆÌÉè¹ÜµÀµÄ³¤¶È±ÈԼƻ®Ôö¼Ó10%£¬½á¹ûÌáǰ6ÌìÍê³É£®Çóʵ¼ÊÿÌìÆÌÉè¹ÜµÀµÄ³¤¶ÈÓëʵ¼ÊÊ©¹¤ÌìÊý£®Ð¡Óîͬѧ¸ù¾ÝÌâÒâÁгö·½³Ì$\frac{660}{x}$-$\frac{660}{x£¨1+10%£©}$=6£®Ôò·½³ÌÖÐδ֪ÊýxËù±íʾµÄÁ¿ÊÇ£¨¡¡¡¡£©| A£® | ʵ¼ÊÿÌìÆÌÉè¹ÜµÀµÄ³¤¶È | B£® | ʵ¼ÊÊ©¹¤µÄÌìÊý | ||
| C£® | Լƻ®Ê©¹¤µÄÌìÊý | D£® | Լƻ®Ã¿ÌìÆÌÉè¹ÜµÀµÄ³¤¶È |
·ÖÎö СÓîËùÁз½³ÌÊÇÒÀ¾ÝÏàµÈ¹ØÏµ£ºÔ¼Æ»®ËùÓÃʱ¼ä-ʵ¼ÊËùÓÃʱ¼ä=6£¬¿ÉÖª·½³ÌÖÐδ֪ÊýxËù±íʾµÄÁ¿£®
½â´ð ½â£ºÉèԼƻ®Ã¿ÌìÆÌÉè¹ÜµÀxÃ×£¬Ôòʵ¼ÊÿÌìÆÌÉè¹ÜµÀ£¨1+10%£©x£¬
¸ù¾ÝÌâÒ⣬¿ÉÁз½³Ì£º$\frac{660}{x}$-$\frac{660}{x£¨1+10%£©}$=6£¬
ËùÒÔСÓîËùÁз½³ÌÖÐδ֪ÊýxËù±íʾµÄÁ¿ÊÇԼƻ®Ã¿ÌìÆÌÉè¹ÜµÀµÄ³¤¶È£¬
¹ÊÑ¡£ºD£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÓÉʵ¼ÊÎÊÌâ³éÏó³ö·Öʽ·½³Ì£¬½âÌâµÄ¹Ø¼üÊÇÒÀ¾ÝËù¸ø·½³Ì»¹ÔµÈÁ¿¹ØÏµ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
12£®ÈôµãP£¨m-1£¬m£©ÔÚµÚ¶þÏóÏÞ£¬ÔòmµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
| A£® | m£¼0 | B£® | m£¾1 | C£® | -1£¼m£¼0 | D£® | 0£¼m£¼1 |
13£®ÏÂÁз½³Ì£¬½âΪx=4µÄÊÇ£¨¡¡¡¡£©
| A£® | 2x-2=-10 | B£® | $\frac{x}{5}$+$\frac{8}{15}$=$\frac{x}{3}$ | C£® | 4£¨x-1£©=x-1 | D£® | 3£¨x+2£©=2x+2 |
10£®ÏÂÁи÷ʽԼ·ÖÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | $\frac{{a}^{2}-{b}^{2}}{a-b}$=a-b | B£® | $\frac{y+a}{x+a}$=$\frac{y}{x}$ | C£® | $\frac{m-n}{n-m}$=-1 | D£® | $\frac{-a-b}{a-b}$=-1 |
17£®ÔÚÊýÖáÉÏ£¬Ôµã×ó±ßµÄµãËù±íʾµÄÊÇÊýÊÇ£¨¡¡¡¡£©
| A£® | ÕýÊý | B£® | ¸ºÊý | C£® | ·Ç¸ºÊý | D£® | ·ÇÕýÊý |
7£®ÏÖÔÚÍø¹ºÔ½À´Ô½¶àµØ³ÉΪÈËÃǵÄÒ»ÖÖÏû·Ñ·½Ê½£¬ÔÚ2016ÄêµÄ¡°Ë«11¡±ÍøÉÏ´ÙÏú»î¶¯ÖÐÌìèºÍÌÔ±¦µÄÖ§¸¶½»Ò×¶îÍ»ÆÆ120000000000Ôª£¬½«Êý×Ö120000000000ÓÿÆÑ§¼ÇÊý·¨±íʾΪ£¨¡¡¡¡£©
| A£® | 1.2¡Á1012 | B£® | 1.2¡Á1011 | C£® | 0.12¡Á1011 | D£® | 12¡Á1011 |
14£®ÏÂÁÐËĸöµã£¬ÔÚ·´±ÈÀýº¯Êýy=$\frac{6}{x}$µÄͼÏóÉϵÄÊÇ£¨¡¡¡¡£©
| A£® | £¨-6£¬-1£© | B£® | £¨2£¬4£© | C£® | £¨3£¬-2£© | D£® | £¨1£¬-6£© |
11£®ÏÂÁÐÑ¡ÏîÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | 50=0 | B£® | 2-3=$\frac{1}{6}$ | C£® | £¨$\frac{1}{3}$£©-1£¼£¨-3£©0£¼£¨-3£©-2 | D£® | £¨-3£©-2£¼£¨-3£©0£¼£¨$\frac{1}{3}$£©-1 |