ÌâÄ¿ÄÚÈÝ
7£®£¨1£©µçÏ߸ËABµÄ¸ßΪ¶àÉÙ£¿
£¨2£©Ð¡ÁÁÈÏΪÂäÔÚµØÉϺÍǽÉϵÄÓ°×Ó³¤Ïà¼Ó¾ÍÊǵçÏ߸ËÓ°×ÓÈ«²¿ÂäÔÚµØÃæÉÏʱµÄÓ°³¤£¬ÄãÈÏΪ¶ÔÂð£¿Èô²»¶Ô£¬ÇëÇó³öµçÏ߸ËABÓ°×ÓÈ«²¿ÂäÔÚµØÃæÉÏʱµÄÓ°³¤£®
·ÖÎö £¨1£©ÀûÓÃÔÚͬһʱ¿Ì¡¢Í¬Ò»µØµãÎïÌåµÄ¸ßÓëÆäÓ°×Ó³¤µÄ±ÈÖµÏàͬÀ´½â´ð£®
£¨2£©ÉèµçÏ߸ËABÓ°×ÓÈ«²¿ÂäÔÚµØÃæÉÏʱµÄÓ°³¤ÎªxÃ×£¬ÒÀ¾Ý¡°ÎïÌåµÄʵ¼Ê¸ß¶ÈºÍÓ°³¤³É±ÈÀý¡±Áгö·½³Ì²¢½â´ð£®
½â´ð
£¨1£©½â£º¹ýµãC×÷CE¡ÎBD£¬½»ABÓÚµãE£¬Ò×µÃËıßÐÎCEBDΪ¾ØÐΣ®
¡àCE=BD=3£¬EB=CD=2£¬
ÒÀÌâÒâÓÐ $\frac{AE}{EC}=\frac{1}{0.5}$£¬¼´ $\frac{AE}{3}=\frac{1}{0.5}$£¬
¡àAE=6£¬
¡àAB=AE+EB=6+2=8£®
¼´µçÏ߸ËABµÄ¸ßΪ8Ã×£®
£¨2£©²»¶Ô£®ÀíÓÉÈçÏ£º
ÉèµçÏ߸ËABÓ°×ÓÈ«²¿ÂäÔÚµØÃæÉÏʱµÄÓ°³¤ÎªxÃ×£¬Ôò$\frac{8}{x}=\frac{1}{0.5}$£¬
¡àx=4£¨Ã×£©
´ð£ºµçÏ߸ËABÓ°×ÓÈ«²¿ÂäÔÚµØÃæÉÏʱµÄÓ°³¤Îª4Ã×£®
µãÆÀ ±¾ÌâÖ»ÒªÊǰÑʵ¼ÊÎÊÌâ³éÏóµ½ÏàËÆÈý½ÇÐÎÖУ¬ÀûÓÃÏàËÆÈý½ÇÐεÄÏàËÆ±È£¬ÁгöµÈʽ£¬Çó½â¼´¿É£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
17£®ÏÂÁиùʽÊÇ×î¼ò¶þ´Î¸ùʽµÄÊÇ£¨¡¡¡¡£©
| A£® | $\sqrt{0.3}$ | B£® | $\sqrt{{a}^{2}-{b}^{2}}$ | C£® | $\sqrt{{a}^{2}b}$ | D£® | $\sqrt{12}$ |
15£®ÔÚÏÂÁжàÏîʽ³Ë·¨ÖУ¬²»ÄÜÓÃÆ½·½²î¹«Ê½¼ÆËãµÄÊÇ£¨¡¡¡¡£©
| A£® | £¨a-b£©£¨-a+b£© | B£® | £¨m3-n3£©£¨m3+n3£© | C£® | £¨-7-x£©£¨7-x£© | D£® | £¨x2-y2£©£¨y2+x2£© |