题目内容
解方程:
(y+1)+
(y+2)+
(y+3)+…+
(y+2013)=2013.
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2014 |
考点:解一元一次方程
专题:
分析:将原方程拆项变形为:(
+
+
+…+
)y+(
+
+
+…+
)=2013,进一步移项合并即可得到:(
+
+
+…+
)y=
+
+
+
,从而可求出y的值.
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2014 |
| 1 |
| 2 |
| 2 |
| 3 |
| 3 |
| 4 |
| 2013 |
| 2014 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2014 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 2013 |
| 2014 |
解答:解:
(y+1)+
(y+2)+
(y+3)+…+
(y+2013)=2013.
原方程可变形为:
(
+
+
+…+
)y+(
+
+
+…+
)=2013,
移项,合并得:
(
+
+
+…+
)y=
+
+
+
,
系数化为1得:
y=1.
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2014 |
原方程可变形为:
(
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2014 |
| 1 |
| 2 |
| 2 |
| 3 |
| 3 |
| 4 |
| 2013 |
| 2014 |
移项,合并得:
(
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2014 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 2013 |
| 2014 |
系数化为1得:
y=1.
点评:此题考查了一元一次方程的解法,解题的关键是:将原方程拆项变形.
练习册系列答案
相关题目
| A、1<x<3 | B、x<1 |
| C、x>3 | D、x<1或x>3 |